服务热线
178 0020 3020
1. 学习误差线的添加,看到网上有人写了一个function,大家可以保存用于以后自己的数据处理
## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).
## data: a data frame.
## measurevar: the name of a column that contains the variable to be summariezed
## groupvars: a vector containing names of columns that contain grouping variables
## na.rm: a boolean that indicates whether to ignore NA's
## conf.interval: the percent range of the confidence interval (default is 95%)
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE,
conf.interval=.95, .drop=TRUE) {
library(plyr)
# 计算长度
length2 <- function (x, na.rm=FALSE) {
if (na.rm) sum(!is.na(x))
else length(x)
}
# 以 groupvars 为组,计算每组的长度,均值,以及标准差
# ddply 就是 dplyr 中的 group_by + summarise
datac <- ddply(data, groupvars, .drop=.drop,
.fun = function(xx, col) {
c(N = length2(xx[[col]], na.rm=na.rm),
mean = mean (xx[[col]], na.rm=na.rm),
sd = sd (xx[[col]], na.rm=na.rm)
)
},
measurevar
)
# 重命名
datac <- plyr::rename(datac, c("mean" = measurevar))
# 计算标准偏差
datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
# Confidence interval multiplier for standard error
# Calculate t-statistic for confidence interval:
# e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
# 计算置信区间
ciMult <- qt(conf.interval/2 + .5, datac$N-1)
datac$ci <- datac$se * ciMult
return(datac)
}
tg <- ToothGrowth
tgc <- summarySE(tg, measurevar="len", groupvars=c("supp","dose"))
ggplot(tgc, aes(x=dose, y=len, colour=supp))+geom_point()+geom_line()+ geom_errorbar(aes(ymin=len-se, ymax=len+se), width=.1)+ggtitle("R2-35")
ggplot(midwest,aes(x=area,y=poptotal))+geom_point(aes(col=state,size=popdensity))+geom_smooth(method='loess')+xlim(c(0,0.1))+ylim(c(0,500000))+ggtitle("R2-35")
library(ggplot2)
library(plyr)
require(plyr)
require(reshape2)
require(scales)
data<- read.csv("task3.csv",header = T)
data$Name <- with(data, reorder(Name, PTS))
nba.m <- melt(data)
data.m <- ddply(nba.m, .(variable), transform,rescale = rescale(value))
ggplot(data.m, aes(variable, Name)) + geom_tile(aes(fill = rescale),colour = "white") + scale_fill_gradient(low = "white",high = "blue")+theme(axis.text.x = element_text(angle = 45, hjust = 0.5, vjust = 0.5))
附件