服务热线
178 0020 3020
setwd("F:\\Doctor\\R语言学习\\互助小组\\第10期作业") #Figure 10.1 data<-read.csv("10-1.csv",header=TRUE) library(ggplot2) library(plyr) mytheme_10 <- theme_bw() + theme(panel.grid = element_blank()) cdata <- ddply(data, c("Group","Time"),summarise,mean = mean(value),sd = sd(value)) ggplot(cdata, aes(Time,mean,group=Group,color=Group)) + ggtitle("R2-20") + geom_line()+ geom_point(size=3,aes(shape=Group))+ geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd),width=0.1)+ mytheme_10 #Figure 10.2 library(ggplot2) options(scipen=999) theme_set(mytheme_10) data("midwest", package = "ggplot2") ggplot(midwest, aes(x=area, y=poptotal)) + geom_point(aes(col=state, size=popdensity)) + geom_smooth(method="loess", se=T) + scale_color_brewer(palette = "Spectral")+ xlim(c(0, 0.1)) + ylim(c(0, 500000)) + labs(subtitle="Area Vs Population", y="Population", x="Area",title="R2-20",caption = "Source: midwest") #Figure 10.3 library(reshape2) library(ggplot2) library(plyr) library(scales) data_heatmap<- read.csv("task3.csv") data_m <- melt(data_heatmap, id.vars=c("Name")) data_m <- ddply(data_m, .(variable), transform, label = rescale(value)) ggplot(data_m, aes(x=variable,y=Name)) + geom_tile(aes(fill=label)) + scale_fill_gradient(low = "white", high = "steelblue") + xlab("Type") + theme_bw() + ggtitle("R2-20")
附件