服务热线
178 0020 3020
#Figure 1
setwd("D:/projects/R learning/week 10 data")
data<-read.csv("R2-1-2.csv",header=TRUE)
library(ggplot2)
graph <- ggplot(data=data, aes(Time,value,color =SIZE,shape = SIZE))+
geom_line(color = "black")+geom_point(size=4)+
ggtitle("R2-38")+theme_bw()+theme(panel.border = element_blank(),panel.grid.major = element_blank(),panel.grid.minor = element_blank())
#Figure 2
library(ggplot2)
options(scipen=999)
data("midwest", package = "ggplot2")
ggplot(midwest, aes(x=area, y=poptotal)) +
geom_point(aes(col=state, size=popdensity)) +
geom_smooth(method="loess", se=T) +
scale_color_brewer(palette = "Spectral")+
xlim(c(0, 0.1)) +
ylim(c(0, 500000)) +
labs(subtitle="Area Vs Population",
y="Population", x="Area",title="R2-38",caption = "Source: midwest")
#Figure 3
library(reshape2)
library(ggplot2)
library(plyr)
library(scales)
data_heatmap<- read.csv("task3.csv")
data_m <- melt(data_heatmap, id.vars=c("Name"))
data_m <- ddply(data_m, .(variable), transform, label = rescale(value))
ggplot(data_m, aes(x=variable,y=Name)) +
geom_tile(aes(fill=label)) +
scale_fill_gradient(low = "white", high = "steelblue") +
xlab("Type") + theme_bw() + ggtitle("R2-38")
附件