R代码7-绘制生存曲线

首席躺平官 2021-07-29 16:11:19 阅读: 1664
#生存曲线绘制
library(survival)
library(ggplot2)
library(survminer)
library(magrittr)


setwd("D:/geo/TCGA_LUAD/")

exprSet = read.csv("exprSet.csv",header = T,row.names = 1)



sample = colnames(exprSet)
treat_type=sample
for(i in 1:length(sample)){
  if(substr(sample[i],14,15)=="11"){
    #是肿瘤,要知道是哪一期
    treat_type[i]="Contr"
  }else{
    treat_type[i]="Tumor"
  }
}
treat_type = as.factor(treat_type)

exprSet_tumor = exprSet[,treat_type=="Tumor"]
# 60380   533

#获得data属性
clinical = read.csv("clinical.csv", header = T, stringsAsFactors = F)

data_trait = data.frame(
  "caseid"=clinical$submitter_id,
  "gender"=0,
  "OS"=0,
  "status"=0,
  "stage_1"=0,
  "stage_2"=0,
  "stage_3"=0,
  "stage_4"=0
)
for(i in 1:length(clinical[,1])){
  if(clinical$gender[i]=="male"){
    data_trait[i,c("gender")]=1
  }
  if(clinical$vital_status[i]=="alive"){
    data_trait[i,c('status')]=1
    data_trait[i,c('OS')]=clinical$days_to_last_follow_up[i]
  }else{
    data_trait[i,c('status')]=2
    data_trait[i,c('OS')]=clinical$days_to_death[i]
  }
  
  if(clinical$tumor_stage[i]=="stage i"){
    data_trait[i,c("stage_1")]=1
  }else if(clinical$tumor_stage[i]=="stage ia"){
    data_trait[i,c("stage_1")]=1
  }else if(clinical$tumor_stage[i]=="stage ib"){
    data_trait[i,c("stage_1")]=1
  }else if(clinical$tumor_stage[i]=="stage ii"){
    data_trait[i,c("stage_2")]=1
  }else if(clinical$tumor_stage[i]=="stage iia"){
    data_trait[i,c("stage_2")]=1
  }else if(clinical$tumor_stage[i]=="stage iib"){
    data_trait[i,c("stage_2")]=1
  }else if(clinical$tumor_stage[i]=="stage iiia"){
    data_trait[i,c("stage_3")]=1
  }else if(clinical$tumor_stage[i]=="stage iiib"){
    data_trait[i,c("stage_3")]=1
  }else if(clinical$tumor_stage[i]=="stage iv"){
    data_trait[i,c("stage_4")]=1
  }
}
data_trait$caseid = gsub("-","\\.",data_trait$caseid)
row.names(data_trait)=data_trait$caseid
data_trait = data_trait[,-1]
dim(data_trait)
# 515 7
data_trait = data_trait[data_trait$OS!="--" & data_trait$OS!=0,]
dim(data_trait)
# 502

#删除重复的样本
exprSet_tumor = exprSet[,treat_type=="Tumor"]
exprSet_tumor =as.data.frame(t(exprSet_tumor))
exprSet_tumor$caseid =substr(row.names(exprSet_tumor),1,12)

exprSet_tumor<- aggregate(x = exprSet_tumor[,-535],by = list(exprSet_tumor$caseid), FUN = min)

row.names(exprSet_tumor)=exprSet_tumor$Group.1
exprSet_tumor = exprSet_tumor[,-1]
exprSet_tumor = t(as.matrix(exprSet_tumor))
dim(exprSet_tumor)

#获得data_trait对应的表达数据
expr_new = c()
caseid = as.vector(row.names(data_trait))

for(i in 1:length(caseid)){
  
  if(i==132 | i ==134){
    temp = exprSet[,substr(colnames(exprSet),1,12)==caseid[i]]
  }else{
    temp = exprSet_tumor[,substr(colnames(exprSet_tumor),1,12) ==caseid[i]]
  }
  if(length(expr_new)==0){
    expr_new = temp
  }else{
    expr_new = cbind(expr_new,temp)
  }
  
}
colnames(expr_new) = caseid


#> dim(trait)
# 533,7
# FHL1,CAVIN2,EDNRB,VEGFD,TEK,AGER,AOC3,RGCC,CA4,INMT,
#PRX,S1PR1,LDB2,ROBO4,CDH5,EPAS1,PECAM1,CLIC5,EMCN,ADH1B


################################# 获得某一基因在LUAD中的生存曲线 ,可以修改为其他基因 ###########
gene="AOC1"

#trait_temp =trait[trait$stage_1==1,]
trait_temp = data_trait
#stage_case = row.names(trait_temp)

#expr =exprSet_tumor[row.names(exprSet_tumor)==gene,colnames(exprSet_tumor) %in% stage_case]
expr =expr_new[row.names(expr_new)==gene,]


expr_clinical = data.frame(
  "ID"=caseid,
  "value"=as.vector(as.numeric(expr)),
  "OS"=trait_temp$OS,
  "status"= trait_temp$status,
  "s"=1,
  "tag"=1
)

q = quantile(expr_clinical$value, na.rm = T)

#前25%为高表达组
low_num = 0
high_num = 0
for(j in 1:length(expr_clinical[,1])){
  
  if(expr_clinical[j,2] > q[4]){
    expr_clinical$tag[j]=2
    high_num = high_num+1
  }else{
    expr_clinical$tag[j]=1
    low_num = low_num+1
  }
  if(expr_clinical$status[j]==1){
    expr_clinical$s[j]=1
  }else{
    expr_clinical$s[j]=2
  }
}

expr_clinical$OS = as.numeric(as.character(expr_clinical$OS))

expr_clinical$tag = as.factor(expr_clinical$tag)

data1=expr_clinical
pdfname = paste0("sur-0.25-",gene,".pdf")
pdf(pdfname,width=4,height=4)
my_df <- survfit(Surv(OS,s)~tag,data=data1)
ggsurvplot(
  my_df,
  palette = c("#e01f27", "#154898"),
  pval=TRUE,
  size = 0.5,
  pval.coord=c(1,1),
  surv.median.line="hv",
  legend.title=gene,
  legend.labs=c(paste0("low&median(n=",low_num,")"),paste0("high(n=",high_num,")")),
  risk.table=FALSE,
  ncensor.plot=FALSE)+ggtitle(gene)
dev.off()
邀请讨论

附件

{{f.title}} 大小 {{f.file_size}} 下载 {{f.count_download}} 金币 {{f.count_gold}}
{{item.nick_name}} 受邀请回答 {{item.create_time}}
{{item.refer_comment.nick_name}} {{item.refer_comment.create_time}}

附件

{{f.title}} 大小 {{f.file_size}} 下载 {{f.count_download}} 金币 {{f.count_gold}}
切换到完整回复 发送回复
赞({{item.count_zan}}) 踩({{item.count_cai}}) 删除 回复 关闭
科研狗©2015-2025 科研好助手,京ICP备20005780号-1 建议意见

服务热线

178 0020 3020

微信服务号